Files
flyer-crawler.projectium.com/src/services/flyerAiProcessor.server.ts
Torben Sorensen c24103d9a0
All checks were successful
Deploy to Test Environment / deploy-to-test (push) Successful in 16m42s
frontend direct testing result and fixes
2026-01-18 13:57:47 -08:00

211 lines
7.8 KiB
TypeScript

// src/services/flyerAiProcessor.server.ts
import { z } from 'zod';
import type { Logger } from 'pino';
import type { AIService } from './aiService.server';
import type { PersonalizationRepository } from './db/personalization.db';
import { AiDataValidationError } from './processingErrors';
import type { FlyerJobData } from '../types/job-data';
import { AiFlyerDataSchema } from '../types/ai'; // Import consolidated schemas and helper
export type ValidatedAiDataType = z.infer<typeof AiFlyerDataSchema>;
export interface AiProcessorResult {
data: ValidatedAiDataType;
needsReview: boolean;
}
/**
* Type definition for the extractAndValidateData method signature.
* Used for dependency injection in tests.
*/
export type ExtractAndValidateDataFn = (
imagePaths: { path: string; mimetype: string }[],
jobData: FlyerJobData,
logger: Logger,
) => Promise<AiProcessorResult>;
/**
* This class encapsulates the logic for interacting with the AI service
* to extract and validate data from flyer images.
*/
export class FlyerAiProcessor {
private extractFn: ExtractAndValidateDataFn | null = null;
constructor(
private ai: AIService,
private personalizationRepo: PersonalizationRepository,
) {}
/**
* Allows replacing the extractAndValidateData implementation at runtime.
* This is primarily used for testing to inject mock implementations.
* @internal
*/
// Unique ID for this instance (for debugging multiple instance issues)
private readonly instanceId = Math.random().toString(36).substring(7);
_setExtractAndValidateData(fn: ExtractAndValidateDataFn | null): void {
console.error(
`[DEBUG] FlyerAiProcessor[${this.instanceId}]._setExtractAndValidateData called, ${fn ? 'replacing' : 'resetting'} extract function`,
);
this.extractFn = fn;
}
/**
* Validates the raw data from the AI against the Zod schema.
*/
private _validateAiData(extractedData: unknown, logger: Logger): AiProcessorResult {
const validationResult = AiFlyerDataSchema.safeParse(extractedData);
if (!validationResult.success) {
const errors = validationResult.error.flatten();
logger.error({ errors, rawData: extractedData }, 'AI response failed validation.');
throw new AiDataValidationError(
'AI response validation failed. The returned data structure is incorrect.',
errors,
extractedData,
);
}
// --- Data Quality Checks ---
// After structural validation, perform semantic quality checks to flag low-quality
// extractions for manual review.
const { store_name, items, valid_from, valid_to } = validationResult.data;
const qualityIssues: string[] = [];
// 1. Check for a store name.
if (!store_name || store_name.trim() === '') {
qualityIssues.push('Missing store name');
}
// 2. Check that items were extracted.
if (!items || items.length === 0) {
qualityIssues.push('No items were extracted');
} else {
// 3. If items exist, check their quality (e.g., missing prices).
// The threshold is configurable via an environment variable, defaulting to 0.5 (50%).
const priceQualityThreshold = parseFloat(process.env.AI_PRICE_QUALITY_THRESHOLD || '0.5');
const itemsWithPrice = items.filter(
(item) => item.price_in_cents != null && item.price_in_cents > 0,
).length;
const priceQualityRatio = itemsWithPrice / items.length;
if (priceQualityRatio < priceQualityThreshold) {
// If the ratio of items with a valid price is below the threshold, flag for review.
qualityIssues.push(
`Low price quality (${(priceQualityRatio * 100).toFixed(0)}% of items have a price)`,
);
}
}
// 4. Check for flyer validity dates.
if (!valid_from && !valid_to) {
qualityIssues.push('Missing both valid_from and valid_to dates');
}
const needsReview = qualityIssues.length > 0;
if (needsReview) {
logger.warn(
{ rawData: extractedData, qualityIssues },
`AI response has quality issues. Flagging for review. Issues: ${qualityIssues.join(', ')}`,
);
}
logger.info(
`AI extracted ${validationResult.data.items.length} items. Needs Review: ${needsReview}`,
);
return { data: validationResult.data, needsReview };
}
/**
* Calls the AI service to extract structured data from the flyer images and validates the response.
*/
public async extractAndValidateData(
imagePaths: { path: string; mimetype: string }[],
jobData: FlyerJobData,
logger: Logger,
): Promise<AiProcessorResult> {
console.error(
`[WORKER DEBUG] FlyerAiProcessor[${this.instanceId}]: extractAndValidateData called with ${imagePaths.length} images, extractFn=${this.extractFn ? 'SET' : 'null'}`,
);
// If a mock function is injected (for testing), use it instead of the real implementation
if (this.extractFn) {
console.error(
`[WORKER DEBUG] FlyerAiProcessor[${this.instanceId}]: Using injected extractFn mock`,
);
return this.extractFn(imagePaths, jobData, logger);
}
logger.info(`Starting AI data extraction for ${imagePaths.length} pages.`);
const { submitterIp, userProfileAddress } = jobData;
const { items: masterItems } = await this.personalizationRepo.getAllMasterItems(logger);
logger.debug(`Retrieved ${masterItems.length} master items for AI matching.`);
// BATCHING LOGIC: Process images in chunks to avoid hitting AI payload/token limits.
const BATCH_SIZE = 4;
const batches = [];
for (let i = 0; i < imagePaths.length; i += BATCH_SIZE) {
batches.push(imagePaths.slice(i, i + BATCH_SIZE));
}
// Initialize container for merged data
const mergedData: ValidatedAiDataType = {
store_name: null,
valid_from: null,
valid_to: null,
store_address: null,
items: [],
};
logger.info(
`Processing ${imagePaths.length} pages in ${batches.length} batches (Batch Size: ${BATCH_SIZE}).`,
);
for (const [index, batch] of batches.entries()) {
logger.info(`Processing batch ${index + 1}/${batches.length} (${batch.length} pages)...`);
// The AI service handles rate limiting internally (e.g., max 5 RPM).
// Processing these sequentially ensures we respect that limit.
const batchResult = await this.ai.extractCoreDataFromFlyerImage(
batch,
masterItems,
submitterIp,
userProfileAddress,
logger,
);
// MERGE LOGIC:
// 1. Metadata (Store Name, Dates): Prioritize the first batch (usually the cover page).
// If subsequent batches have data and the current is null, fill it in.
if (index === 0) {
mergedData.store_name = batchResult.store_name;
mergedData.valid_from = batchResult.valid_from;
mergedData.valid_to = batchResult.valid_to;
mergedData.store_address = batchResult.store_address;
} else {
if (!mergedData.store_name && batchResult.store_name)
mergedData.store_name = batchResult.store_name;
if (!mergedData.valid_from && batchResult.valid_from)
mergedData.valid_from = batchResult.valid_from;
if (!mergedData.valid_to && batchResult.valid_to)
mergedData.valid_to = batchResult.valid_to;
if (!mergedData.store_address && batchResult.store_address)
mergedData.store_address = batchResult.store_address;
}
// 2. Items: Append all found items to the master list.
mergedData.items.push(...(batchResult.items || []));
}
logger.info(`Batch processing complete. Total items extracted: ${mergedData.items.length}`);
console.error(
`[WORKER DEBUG] FlyerAiProcessor: Merged AI Data:`,
JSON.stringify(mergedData, null, 2),
);
// Validate the final merged dataset
return this._validateAiData(mergedData, logger);
}
}